Ideální rezistor má jediný parametr, tedy svůj odpor, a tento parametr není závislý na jakýchkoliv vnějších vlivech. Podle Ohmova zákona se tedy proud protékající rezistorem s odporem R a přiloženým napětím U rovná:
- {\displaystyle I={\frac {U}{R}}}
nebo naopak napěťový úbytek vzniklý na témže rezistoru, kterým protéká proud I:
- {\displaystyle U={I}\cdot {R}}
Výkon daný vztahem:
- {\displaystyle P={U}\cdot {I}={I}^{2}\cdot {R}={\frac {U^{2}}{R}}}
rezistor promění v teplo, to znamená, že se procházejícím proudem ohřívá. Není-li rezistor používán jako topné odporové těleso, jedná se o ztrátové teplo.
Reálný rezistor je ovšem vyroben z reálného materiálu vykazujícího elektrický odpor a má určitou geometrii. Z toho vyplývá:
- Hodnota jeho odporu je závislá na teplotě.
- Dokáže v teplo proměnit jen určitý výkon, při větším zatížení, než na které je určen, se zničí přehřátím.
- Hodnota bývá odlišná od jmenovité, uvedené na pouzdře (při výrobě dochází k nepřesnosti a rozptylu parametrů)
- Má omezenou elektrickou pevnost, při aplikaci vyššího napětí může dojít k průrazu nebo poškození.
- Mimo reálný odpor vykazuje také sériovou indukčnost a paralelní kapacitu (viz náhradní schéma). Tyto parazitní veličiny se znatelně projevují až při vyšších frekvencích procházejícího proudu.
- Při velmi vysokých frekvencích na něm navíc dochází k tzv. skin efektu.
- Rezistor vykazuje elektrický šum.
- Podle materiálu použitého k výrobě je hodnota odporu závislá i na přiloženém napětí